Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 370
Filtrar
1.
PLoS Pathog ; 19(5): e1011123, 2023 05.
Artigo em Inglês | MEDLINE | ID: covidwho-2324624

RESUMO

SARS-CoV Spike (S) protein shares considerable homology with SARS-CoV-2 S, especially in the conserved S2 subunit (S2). S protein mediates coronavirus receptor binding and membrane fusion, and the latter activity can greatly influence coronavirus infection. We observed that SARS-CoV S is less effective in inducing membrane fusion compared with SARS-CoV-2 S. We identify that S813T mutation is sufficient in S2 interfering with the cleavage of SARS-CoV-2 S by TMPRSS2, reducing spike fusogenicity and pseudoparticle entry. Conversely, the mutation of T813S in SARS-CoV S increased fusion ability and viral replication. Our data suggested that residue 813 in the S was critical for the proteolytic activation, and the change from threonine to serine at 813 position might be an evolutionary feature adopted by SARS-2-related viruses. This finding deepened the understanding of Spike fusogenicity and could provide a new perspective for exploring Sarbecovirus' evolution.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteólise , Replicação Viral , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
3.
Curr Hypertens Rev ; 18(2): 130-137, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-2215024

RESUMO

BACKGROUND: This review explores the mechanistic action of angiotensin-converting enzyme- 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) in the renin-angiotensinaldosterone system (RAAS) that predisposes hypertensive patients to the adverse outcome of severe COVID-19. METHODS AND RESULTS: Entry of SARS-CoV-2 into the host cell via ACE2 disrupts the RAAS system, creating an imbalance between ACE and ACE2, with an increased inflammatory response, leading to hypertension (HTN), pulmonary vasoconstriction and acute respiratory distress. SARSCoV- 2 may also predispose infected individuals with existing HTN to a greater risk of severe COVID-19 complications. In the duality of COVID-19 and HTN, the imbalance of ACE and ACE2 results in an elevation of AngII and a decrease in Ang (1-7), a hyperinflammatory response and endothelial dysfunction. Endothelial dysfunction is the main factor predisposing hypertensive patients to severe COVID-19 and vice-versa. CONCLUSION: Despite the increase in ACE2 expression in hypertensive SARS-CoV-2 infected patients, ARBs/ACE inhibitors do not influence their severity and clinical outcomes, implicating continued usage. Future large-scale clinical trials are warranted to further elucidate the association between HTN and SARS-CoV-2 infection and the use of ARBs/ACEIs in SARS-CoV-2 hypertensive patients.


Assuntos
COVID-19 , Hipertensão , Humanos , SARS-CoV-2/metabolismo , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Fatores de Risco , Hipertensão/diagnóstico , Sistema Renina-Angiotensina , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
4.
Viruses ; 14(10)2022 09 21.
Artigo em Inglês | MEDLINE | ID: covidwho-2099840

RESUMO

SARS-CoV-2 cell-cell fusion and syncytiation is an emerging pathomechanism in COVID-19, but the precise factors contributing to the process remain ill-defined. In this study, we show that metalloproteases promote SARS-CoV-2 spike protein-induced syncytiation in the absence of established serine proteases using in vitro cell-cell fusion assays. We also show that metalloproteases promote S2'-activation of the SARS-CoV-2 spike protein, and that metalloprotease inhibition significantly reduces the syncytiation of SARS-CoV-2 variants of concern. In the presence of serine proteases, however, metalloprotease inhibition does not reduce spike protein-induced syncytiation and a combination of metalloprotease and serine protease inhibition is necessitated. Moreover, we show that the spike protein induces metalloprotease-dependent ectodomain shedding of the ACE2 receptor and that ACE2 shedding contributes to spike protein-induced syncytiation. These observations suggest a benefit to the incorporation of pharmacological inhibitors of metalloproteases into treatment strategies for patients with COVID-19.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Fusão Celular , Serina Endopeptidases/metabolismo , Metaloproteases , Serina Proteases
5.
J Leukoc Biol ; 112(3): 569-576, 2022 09.
Artigo em Inglês | MEDLINE | ID: covidwho-2047706

RESUMO

Severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV2), which causes the disease COVID-19, has caused an unprecedented global pandemic. Angiotensin-converting enzyme 2 (ACE2) is the major cellular receptor for SARS-CoV2 entry, which is facilitated by viral Spike priming by cellular TMPRSS2. Macrophages play an important role in innate viral defense and are also involved in aberrant immune activation that occurs in COVID-19, and thus direct macrophage infection might contribute to severity of SARS-CoV2 infection. Here, we demonstrate that monocytes and monocyte-derived macrophages (MDM) under in vitro conditions express low-to-undetectable levels of ACE2 and TMPRSS2 and minimal coexpression. Expression of these receptors remained low in MDM induced to different subtypes such as unpolarized, M1 and M2 polarized. Untreated, unpolarized, M1 polarized, and M2 polarized MDM were all resistant to infection with SARS-CoV2 pseudotyped virions. These findings suggest that direct infection of myeloid cells is unlikely to be a major mechanism of SARS-CoV2 pathogenesis. Summary sentence: Monocytes and macrophages express minimal ACE2 and TMPRSS2 and resist SARS-CoV-2 Spike-mediated infection, suggesting direct myeloid cell infection is unlikely a major contributor to pathogenesis.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Macrófagos , Monócitos , Serina Endopeptidases , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/imunologia , Resistência à Doença , Humanos , Macrófagos/metabolismo , Macrófagos/virologia , Monócitos/metabolismo , Monócitos/virologia , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , RNA Viral , SARS-CoV-2 , Serina Endopeptidases/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(38): e2209514119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: covidwho-2017036

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cell entry starts with membrane attachment and ends with spike (S) protein-catalyzed membrane fusion depending on two cleavage steps, namely, one usually by furin in producing cells and the second by TMPRSS2 on target cells. Endosomal cathepsins can carry out both. Using real-time three-dimensional single-virion tracking, we show that fusion and genome penetration require virion exposure to an acidic milieu of pH 6.2 to 6.8, even when furin and TMPRSS2 cleavages have occurred. We detect the sequential steps of S1-fragment dissociation, fusion, and content release from the cell surface in TMPRRS2-overexpressing cells only when exposed to acidic pH. We define a key role of an acidic environment for successful infection, found in endosomal compartments and at the surface of TMPRSS2-expressing cells in the acidic milieu of the nasal cavity.


Assuntos
COVID-19 , Cavidade Nasal , SARS-CoV-2 , Serina Endopeptidases , Internalização do Vírus , COVID-19/virologia , Furina/genética , Furina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Cavidade Nasal/química , Cavidade Nasal/virologia , SARS-CoV-2/fisiologia , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
7.
Eur J Med Chem ; 240: 114585, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: covidwho-1982958

RESUMO

The RNA viruses SARS-CoV-2 and dengue pose a major threat to human health worldwide and their proteases (Mpro; NS2B/NS3) are considered as promising targets for drug development. We present the synthesis and biological evaluation of novel benzoxaborole inhibitors of these two proteases. The most active compound achieves single-digit micromolar activity against SARS-CoV-2 Mpro in a biochemical assay. The most active substance against dengue NS2B/NS3 protease has submicromolar activity in cells (EC50 0.54 µM) and inhibits DENV-2 replication in cell culture. Most benzoxaboroles had no relevant cytotoxicity or significant off-target inhibition. Furthermore, the class demonstrated passive membrane penetration and stability against the evaluated proteases. This compound class may contribute to the development of antiviral agents with activity against DENV or SARS-CoV-2.


Assuntos
COVID-19 , Vírus da Dengue , Dengue , Antivirais/química , Dengue/tratamento farmacológico , Vírus da Dengue/metabolismo , Humanos , Peptídeo Hidrolases , Inibidores de Proteases/química , SARS-CoV-2 , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais
8.
Front Biosci (Landmark Ed) ; 27(7): 217, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: covidwho-1965058

RESUMO

BACKGROUND: SARS-CoV-2 is a positive-sense single-stranded RNA virus. It is enveloped by four structural proteins. The entry of the virus into the host cells is mediated by spike protein binding to the angiotensin converting enzyme 2 (ACE2) and proteolytic cleavage by transmembrane protease serine 2 (TMPRSS2). In this study, we analyzed the expression of the ACE2 receptor and TMPRSS2 in cases under investigation for SARS-CoV-2 infection. METHODS: The study was carried out using the viral transport medium of consecutive nasopharyngeal swabs from 300 people under examination for SARS-CoV-2 infection. All samples underwent the SARS-CoV-2 transcriptase-mediated amplification assay (Procleix® SARS-CoV-2) to detect the virus. Immunocytochemistry was used in each sample to detect the presence of the SARS-CoV-2 nucleoprotein, the ACE2 receptor, and TMPRSS2. RESULTS: An immunocytochemical study with monoclonal antibody against SARS-CoV-2 viral nucleoprotein showed positivity in squamous cells. ACE2 were not detected in the squamous cells obtained from the nasopharyngeal samples. CONCLUSIONS: SARS-CoV-2 predominantly localizes to squamous cells in cytology samples of patients with positive transcriptase-mediated amplification SARS-CoV-2 assay results. The immunocytochemical negativity for ACE2 evidenced in the present study could be related to the cellular heterogeneity present in the nasopharyngeal smear samples and could be related to variations at the genomic level. Our results suggest that SARS-CoV-2 might be present in the nasopharyngeal region because viral cell junctions are weaker. This facilitates viral concentration, infective capacity and migration to specific organs, where SARS-CoV-2 infects target cells by binding to their receptors and then entering.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , COVID-19/diagnóstico , Humanos , Nasofaringe/metabolismo , Proteólise , SARS-CoV-2 , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
9.
Front Endocrinol (Lausanne) ; 13: 862789, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1896674

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although males and females are at equivalent risk of infection, males are more prone to develop a higher severity disease, regardless of age. The factors that mediate susceptibility to SARS-CoV-2 and transmission are still under investigation. A potential role has been attributed to differences in the immune systems response to viral antigens between males and females as well as to different regulatory actions played by sex-related hormones on the two crucial molecular effectors for SARS-CoV-2 infection, TMPRSS2 and ACE2. While few and controversial data about TMPRSS2 transcript regulation in lung cells are emerging, no data on protein expression and activity of TMPRSS2 have been reported. Aim of the present study was to search for possible modulatory actions played by sex-related hormones on TMPRSS2 and ACE2 expression in Calu-3 cells, to test the effects of sex-steroids on the expression of the 32kDa C-term fragment derived from autocatalitic cleavage of TMPRSS2 and its impact on priming of transiently transfected spike protein. Cells were stimulated with different concentrations of methyltrienolone (R1881) or estradiol for 30 h. No difference in mRNA and protein expression levels of full length TMPRSS2 was observed. However, the 32 kDa cleaved serine protease domain was increased after 100 nM R1881 (+2.36 ± 1.13 fold-increase vs control untreated cells, p < 0.05) and 10 nM estradiol (+1.90 ± 0.64, fold-increase vs control untreated cells, p < 0.05) treatment. Both R1881 and estradiol significantly increased the activating proteolytic cleavage of SARS-CoV-2 Spike (S) transfected in Calu-3 cells (+1.76 ± 0.18 and +1.99±,0.76 increase in S cleavage products at R1881 100nM and 10 nM estradiol treatment, respectively, p < 0.001 and p < 0.05 vs control untreated cells, respectively). Finally, no significant differences in ACE2 expression were observed between hormones-stimulated cells and untreated control cells. Altogether, these data suggest that both male and female sex-related hormones are able to induce a proteolityc activation of TMPRSS2, thus promoting viral infection, in agreement with the observation that males and females are equally infected by SARS-CoV-2.


Assuntos
COVID-19 , Serina Endopeptidases , Enzima de Conversão de Angiotensina 2/genética , COVID-19/enzimologia , Linhagem Celular , Estradiol/farmacologia , Feminino , Humanos , Pulmão/metabolismo , Masculino , Metribolona/farmacologia , Peptidil Dipeptidase A/genética , SARS-CoV-2 , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
10.
Antimicrob Agents Chemother ; 66(7): e0043922, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: covidwho-1891730

RESUMO

An essential step in the infection life cycle of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the proteolytic activation of the viral spike (S) protein, which enables membrane fusion and entry into the host cell. Two distinct classes of host proteases have been implicated in the S protein activation step: cell-surface serine proteases, such as the cell-surface transmembrane protease, serine 2 (TMPRSS2), and endosomal cathepsins, leading to entry through either the cell-surface route or the endosomal route, respectively. In cells expressing TMPRSS2, inhibiting endosomal proteases using nonspecific cathepsin inhibitors such as E64d or lysosomotropic compounds such as hydroxychloroquine fails to prevent viral entry, suggesting that the endosomal route of entry is unimportant; however, mechanism-based toxicities and poor efficacy of these compounds confound our understanding of the importance of the endosomal route of entry. Here, to identify better pharmacological agents to elucidate the role of the endosomal route of entry, we profiled a panel of molecules identified through a high-throughput screen that inhibit endosomal pH and/or maturation through different mechanisms. Among the three distinct classes of inhibitors, we found that inhibiting vacuolar-ATPase using the macrolide bafilomycin A1 was the only agent able to potently block viral entry without associated cellular toxicity. Using both pseudotyped and authentic virus, we showed that bafilomycin A1 inhibits SARS-CoV-2 infection both in the absence and presence of TMPRSS2. Moreover, synergy was observed upon combining bafilomycin A1 with Camostat, a TMPRSS2 inhibitor, in neutralizing SARS-CoV-2 entry into TMPRSS2-expressing cells. Overall, this study highlights the importance of the endosomal route of entry for SARS-CoV-2 and provides a rationale for the generation of successful intervention strategies against this virus that combine inhibitors of both entry pathways.


Assuntos
Tratamento Farmacológico da COVID-19 , ATPases Vacuolares Próton-Translocadoras , Endossomos/metabolismo , Humanos , SARS-CoV-2 , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus
11.
Nat Chem Biol ; 18(9): 963-971, 2022 09.
Artigo em Inglês | MEDLINE | ID: covidwho-1886218

RESUMO

Transmembrane protease, serine 2 (TMPRSS2) has been identified as key host cell factor for viral entry and pathogenesis of SARS-CoV-2. Specifically, TMPRSS2 proteolytically processes the SARS-CoV-2 Spike (S) protein, enabling virus-host membrane fusion and infection of the airways. We present here a recombinant production strategy for enzymatically active TMPRSS2 and characterization of its matured proteolytic activity, as well as its 1.95 Å X-ray cocrystal structure with the synthetic protease inhibitor nafamostat. Our study provides a structural basis for the potent but nonspecific inhibition by nafamostat and identifies distinguishing features of the TMPRSS2 substrate binding pocket that explain specificity. TMPRSS2 cleaved SARS-CoV-2 S protein at multiple sites, including the canonical S1/S2 cleavage site. We ranked the potency of clinical protease inhibitors with half-maximal inhibitory concentrations ranging from 1.4 nM to 120 µM and determined inhibitor mechanisms of action, providing the groundwork for drug development efforts to selectively inhibit TMPRSS2.


Assuntos
COVID-19 , SARS-CoV-2 , Serina Endopeptidases/metabolismo , Humanos , Peptídeo Hidrolases , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus
12.
Eur J Clin Invest ; 52(8): e13786, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: covidwho-1774786

RESUMO

BACKGROUND: Individuals with chronic kidney disease are affected by acute respiratory syndrome coronavirus 2 (SARS-CoV-2) due to multiple comorbidities and altered immune system. The first step of the infection process is the binding of SARS-CoV-2 with angiotensin-converting enzyme 2 (ACE2) receptor, followed by its priming by transmembrane protease serine 2 (TMPRSS2). We hypothesized that circulating soluble ACE2 levels, as well as the expressions of ACE2 and TMPRSS2 in the microvasculature, are increased in patients with end-stage kidney disease (ESKD). METHODS: A total of 210 participants were enrolled, representing 80 ESKD patients and 73 non-CKD controls for soluble ACE2, and 31 ESKD and 26 non-CKD controls for vasculature and fat tissue bioassays. We have assessed ACE2 expression in blood using ELISA and in tissue using immunofluorescence. RESULTS: Soluble ACE2 levels were higher in ESKD patients compared to controls; however, there is no sex difference observed. In ESKD and controls, soluble ACE2 positively correlated with Interleukin 6 (IL-6) and C-reactive protein (CRP), respectively. Similarly, ACE2 tissue expression in the vasculature was higher in ESKD patients; moreover, this higher ACE2 expression was observed only in male ESKD patients. In addition, TMPRSS2 expression was observed in vessels from males and females but showed no sex difference. The expression of ACE2 receptor was higher in ESKD patients on ACE-inhibitor/angiotensin blocker treatment. CONCLUSION: ESKD is associated with increased ACE2 levels in the circulation and pronounced in male vasculature; however, further studies are warranted to assess possible sex differences on specific treatment regime(s) for different comorbidities present in ESKD.


Assuntos
COVID-19 , Falência Renal Crônica , Insuficiência Renal Crônica , Serina Endopeptidases/metabolismo , Enzima de Conversão de Angiotensina 2 , Feminino , Humanos , Masculino , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Serina
13.
J Virol ; 96(8): e0012822, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: covidwho-1765079

RESUMO

The spike protein (S) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directs infection of the lungs and other tissues following its binding to the angiotensin-converting enzyme 2 (ACE2) receptor. For effective infection, the S protein is cleaved at two sites: S1/S2 and S2'. The "priming" of the surface S protein at S1/S2 (PRRAR685↓) [the underlined basic amino acids refer to critical residues needed for the furin recognition] by furin has been shown to be important for SARS-CoV-2 infectivity in cells and small-animal models. In this study, for the first time we unambiguously identified by proteomics the fusion activation site S2' as KPSKR815↓ (the underlined basic amino acids refer to critical residues needed for the furin recognition) and demonstrated that this cleavage was strongly enhanced by ACE2 engagement with the S protein. Novel pharmacological furin inhibitors (BOS inhibitors) effectively blocked endogenous S protein processing at both sites in HeLa cells, and SARS-CoV-2 infection of lung-derived Calu-3 cells was completely prevented by combined inhibitors of furin (BOS) and type II transmembrane serine protease 2 (TMPRSS2) (camostat). Quantitative analyses of cell-to-cell fusion and S protein processing revealed that ACE2 shedding by TMPRSS2 was required for TMPRSS2-mediated enhancement of fusion in the absence of S1/S2 priming. We further demonstrated that the collectrin dimerization domain of ACE2 was essential for the effect of TMPRSS2 on cell-to-cell fusion. Overall, our results indicate that furin and TMPRSS2 act synergistically in viral entry and infectivity, supporting the combination of furin and TMPRSS2 inhibitors as potent antivirals against SARS-CoV-2. IMPORTANCE SARS-CoV-2, the etiological agent of COVID-19, has so far resulted in >6.1 million deaths worldwide. The spike protein (S) of the virus directs infection of the lungs and other tissues by binding the angiotensin-converting enzyme 2 (ACE2) receptor. For effective infection, the S protein is cleaved at two sites: S1/S2 and S2'. Cleavage at S1/S2 induces a conformational change favoring the S protein recognition by ACE2. The S2' cleavage is critical for triggering membrane fusion and virus entry into host cells. Our study highlights the complex dynamics of interaction between the S protein, ACE2, and the host proteases furin and TMPRSS2 during SARS-CoV-2 entry and suggests that the combination of a nontoxic furin inhibitor with a TMPRSS2 inhibitor significantly reduces viral entry in lung cells, as evidenced by an average synergistic ∼95% reduction of viral infection. This represents a powerful novel antiviral approach to reduce viral spread in individuals infected by SARS-CoV-2 or future related coronaviruses.


Assuntos
COVID-19 , Furina , SARS-CoV-2 , Serina Endopeptidases , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/patologia , COVID-19/virologia , Furina/metabolismo , Células HeLa , Humanos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus
14.
Nature ; 603(7902): 706-714, 2022 03.
Artigo em Inglês | MEDLINE | ID: covidwho-1764186

RESUMO

The SARS-CoV-2 Omicron BA.1 variant emerged in 20211 and has multiple mutations in its spike protein2. Here we show that the spike protein of Omicron has a higher affinity for ACE2 compared with Delta, and a marked change in its antigenicity increases Omicron's evasion of therapeutic monoclonal and vaccine-elicited polyclonal neutralizing antibodies after two doses. mRNA vaccination as a third vaccine dose rescues and broadens neutralization. Importantly, the antiviral drugs remdesivir and molnupiravir retain efficacy against Omicron BA.1. Replication was similar for Omicron and Delta virus isolates in human nasal epithelial cultures. However, in lung cells and gut cells, Omicron demonstrated lower replication. Omicron spike protein was less efficiently cleaved compared with Delta. The differences in replication were mapped to the entry efficiency of the virus on the basis of spike-pseudotyped virus assays. The defect in entry of Omicron pseudotyped virus to specific cell types effectively correlated with higher cellular RNA expression of TMPRSS2, and deletion of TMPRSS2 affected Delta entry to a greater extent than Omicron. Furthermore, drug inhibitors targeting specific entry pathways3 demonstrated that the Omicron spike inefficiently uses the cellular protease TMPRSS2, which promotes cell entry through plasma membrane fusion, with greater dependency on cell entry through the endocytic pathway. Consistent with suboptimal S1/S2 cleavage and inability to use TMPRSS2, syncytium formation by the Omicron spike was substantially impaired compared with the Delta spike. The less efficient spike cleavage of Omicron at S1/S2 is associated with a shift in cellular tropism away from TMPRSS2-expressing cells, with implications for altered pathogenesis.


Assuntos
COVID-19/patologia , COVID-19/virologia , Fusão de Membrana , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Serina Endopeptidases/metabolismo , Internalização do Vírus , Adulto , Idoso , Idoso de 80 Anos ou mais , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/virologia , Chlorocebus aethiops , Convalescença , Feminino , Humanos , Soros Imunes/imunologia , Intestinos/patologia , Intestinos/virologia , Pulmão/patologia , Pulmão/virologia , Masculino , Pessoa de Meia-Idade , Mutação , Mucosa Nasal/patologia , Mucosa Nasal/virologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Técnicas de Cultura de Tecidos , Virulência , Replicação Viral
15.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: covidwho-1742493

RESUMO

Advanced prostate cancer (PCa) patients with bone metastases are treated with androgen pathway directed therapy (APDT). However, this treatment invariably fails and the cancer becomes castration resistant. To elucidate resistance mechanisms and to provide a more predictive pre-clinical research platform reflecting tumor heterogeneity, we established organoids from a patient-derived xenograft (PDX) model of bone metastatic prostate cancer, PCSD1. APDT-resistant PDX-derived organoids (PDOs) emerged when cultured without androgen or with the anti-androgen, enzalutamide. Transcriptomics revealed up-regulation of neurogenic and steroidogenic genes and down-regulation of DNA repair, cell cycle, circadian pathways and the severe acute respiratory syndrome (SARS)-CoV-2 host viral entry factors, ACE2 and TMPRSS2. Time course analysis of the cell cycle in live cells revealed that enzalutamide induced a gradual transition into a reversible dormant state as shown here for the first time at the single cell level in the context of multi-cellular, 3D living organoids using the Fucci2BL fluorescent live cell cycle tracker system. We show here a new mechanism of castration resistance in which enzalutamide induced dormancy and novel basal-luminal-like cells in bone metastatic prostate cancer organoids. These PDX organoids can be used to develop therapies targeting dormant APDT-resistant cells and host factors required for SARS-CoV-2 viral entry.


Assuntos
Neoplasias Ósseas/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Organoides/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Androgênios/farmacologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Benzamidas/farmacologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Nitrilas/farmacologia , Feniltioidantoína/farmacologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transplante Heterólogo , Internalização do Vírus
16.
J Virol ; 96(5): e0218621, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: covidwho-1736028

RESUMO

Recent emergence of SARS-CoV-1 variants demonstrates the potential of this virus for targeted evolution, despite its overall genomic stability. Here we show the dynamics and the mechanisms behind the rapid adaptation of SARS-CoV-2 to growth in Vero E6 cells. The selective advantage for growth in Vero E6 cells is due to increased cleavage efficiency by cathepsins at the mutated S1/S2 site. S1/S2 site also constitutes a heparan sulfate (HS) binding motif that influenced virus growth in Vero E6 cells, but HS antagonist did not inhibit virus adaptation in these cells. The entry of Vero E6-adapted virus into human cells is defective because the mutated spike variants are poorly processed by furin or TMPRSS2. Minor subpopulation that lack the furin cleavage motif in the spike protein rapidly become dominant upon passaging through Vero E6 cells, but wild type sequences are maintained at low percentage in the virus swarm and mediate a rapid reverse adaptation if the virus is passaged again on TMPRSS2+ human cells. Our data show that the spike protein of SARS-CoV-2 can rapidly adapt itself to available proteases and argue for deep sequence surveillance to identify the emergence of novel variants. IMPORTANCE Recently emerging SARS-CoV-2 variants B.1.1.7 (alpha variant), B.1.617.2 (delta variant), and B.1.1.529 (omicron variant) harbor spike mutations and have been linked to increased virus pathogenesis. The emergence of these novel variants highlights coronavirus adaptation and evolution potential, despite the stable consensus genotype of clinical isolates. We show that subdominant variants maintained in the virus population enable the virus to rapidly adapt to selection pressure. Although these adaptations lead to genotype change, the change is not absolute and genomes with original genotype are maintained in the virus swarm. Thus, our results imply that the relative stability of SARS-CoV-2 in numerous independent clinical isolates belies its potential for rapid adaptation to new conditions.


Assuntos
COVID-19/metabolismo , Furina/metabolismo , SARS-CoV-2/fisiologia , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Adaptação Fisiológica , Animais , COVID-19/genética , COVID-19/virologia , Chlorocebus aethiops , Efeito Citopatogênico Viral , Furina/genética , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , SARS-CoV-2/genética , Serina Endopeptidases/genética , Glicoproteína da Espícula de Coronavírus/genética , Células Vero , Replicação Viral
17.
J Med Virol ; 93(9): 5487-5504, 2021 09.
Artigo em Inglês | MEDLINE | ID: covidwho-1733919

RESUMO

Along with the control and prevention of coronavirus disease 2019 transmission, infected animals might have potential to carry the virus to spark new outbreaks. However, very few studies explore the susceptibility of animals to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Viral attachment as a crucial step for cross-species infection requires angiotensin-converting enzyme 2 (ACE2) as a receptor and depends on TMPRSS2 protease activity. Here, we searched the genomes of metazoans from different classes using an extensive BLASTP survey and found ACE2 and TMPRSS2 occur in vertebrates, but some vertebrates lack Tmprss2. We identified 6 amino acids among 25 known human ACE2 residues are highly associated with the binding of ACE2 to SARS-CoV-2 (p value < .01) by Fisher exact test, and following this, calculated the probability of viral attachment within each species by the randomForest function from R randomForest library. Furthermore, we observed that Ace2 selected from seven animals based on the above analysis lack the hydrophobic contacts identified on human ACE2, indicating less affinity of SARS-CoV-2 to Ace2 in animals than humans. Finally, the alignment of 3D structure between human ACE2 and other animals by I-TASSER and TM-align displayed a reasonable structure for viral attachment within these species. Taken together, our data may shed light on the human-to-animal transmission of SARS-CoV-2.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/virologia , Interações Hospedeiro-Patógeno , SARS-CoV-2/fisiologia , Serina Endopeptidases/metabolismo , Vertebrados/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/genética , COVID-19/metabolismo , Suscetibilidade a Doenças , Predisposição Genética para Doença , Humanos , Receptores Virais/metabolismo , SARS-CoV-2/classificação , Serina Endopeptidases/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Vertebrados/genética , Ligação Viral , Internalização do Vírus , Liberação de Vírus
18.
Front Immunol ; 13: 811430, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1731772

RESUMO

Despite significant research efforts, treatment options for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain limited. This is due in part to a lack of therapeutics that increase host defense to the virus. Replication of SARS-CoV-2 in lung tissue is associated with marked infiltration of macrophages and activation of innate immune inflammatory responses that amplify tissue injury. Antagonists of the androgen (AR) and glucocorticoid (GR) receptors have shown efficacy in models of COVID-19 and in clinical studies because the cell surface proteins required for viral entry, angiotensin converting enzyme 2 (ACE2) and the transmembrane protease, serine 2 (TMPRSS2), are transcriptionally regulated by these receptors. We postulated that the GR and AR modulator, PT150, would reduce infectivity of SARS-CoV-2 and prevent inflammatory lung injury in the Syrian golden hamster model of COVID-19 by down-regulating expression of critical genes regulated through these receptors. Animals were infected intranasally with 2.5 × 104 TCID50/ml equivalents of SARS-CoV-2 (strain 2019-nCoV/USA-WA1/2020) and PT150 was administered by oral gavage at 30 and 100 mg/Kg/day for a total of 7 days. Animals were examined at 3, 5 and 7 days post-infection (DPI) for lung histopathology, viral load and production of proteins regulating the progression of SARS-CoV-2 infection. Results indicated that oral administration of PT150 caused a dose-dependent decrease in replication of SARS-CoV-2 in lung, as well as in expression of ACE2 and TMPRSS2. Lung hypercellularity and infiltration of macrophages and CD4+ T-cells were dramatically decreased in PT150-treated animals, as was tissue damage and expression of IL-6. Molecular docking studies suggest that PT150 binds to the co-activator interface of the ligand-binding domain of both AR and GR, thereby acting as an allosteric modulator and transcriptional repressor of these receptors. Phylogenetic analysis of AR and GR revealed a high degree of sequence identity maintained across multiple species, including humans, suggesting that the mechanism of action and therapeutic efficacy observed in Syrian hamsters would likely be predictive of positive outcomes in patients. PT150 is therefore a strong candidate for further clinical development for the treatment of COVID-19 across variants of SARS-CoV-2.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Glucocorticoides/metabolismo , Imunidade Inata/efeitos dos fármacos , Inflamação/tratamento farmacológico , Receptores Androgênicos/metabolismo , Internalização do Vírus/efeitos dos fármacos , Animais , COVID-19/metabolismo , Modelos Animais de Doenças , Feminino , Inflamação/metabolismo , Inflamação/virologia , Pulmão/virologia , Masculino , Mesocricetus , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Carga Viral/efeitos dos fármacos
19.
Pediatr Infect Dis J ; 41(2): e36-e45, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1722659

RESUMO

Although there are many hypotheses for the age-related difference in the severity of COVID-19, differences in innate, adaptive and heterologous immunity, together with differences in endothelial and clotting function, are the most likely mechanisms underlying the marked age gradient. Children have a faster and stronger innate immune response to SARS-CoV-2, especially in the nasal mucosa, which rapidly controls the virus. In contrast, adults can have an overactive, dysregulated and less effective innate response that leads to uncontrolled pro-inflammatory cytokine production and tissue injury. More recent exposure to other viruses and routine vaccines in children might be associated with protective cross-reactive antibodies and T cells against SARS-CoV-2. There is less evidence to support other mechanisms that have been proposed to explain the age-related difference in outcome following SARS-CoV-2 infection, including pre-existing immunity from exposure to common circulating coronaviruses, differences in the distribution and expression of the entry receptors ACE2 and TMPRSS2, and difference in viral load.


Assuntos
Imunidade Adaptativa , Fatores Etários , COVID-19/imunologia , Imunidade Heteróloga , Imunidade Inata , SARS-CoV-2/imunologia , Adulto , Enzima de Conversão de Angiotensina 2/metabolismo , Coagulação Sanguínea/imunologia , Criança , Proteção Cruzada , Reações Cruzadas , Endotélio/imunologia , Humanos , Gravidade do Paciente , Serina Endopeptidases/metabolismo , Carga Viral/imunologia
20.
Mol Med Rep ; 25(4)2022 04.
Artigo em Inglês | MEDLINE | ID: covidwho-1715860

RESUMO

In addition to the angiotensin­converting enzyme 2 (ACE2), a number of host cell entry mediators have been identified for severe acute respiratory syndrome coronavirus­2 (SARS­CoV­2), including transmembrane protease serine 4 (TMPRSS4). The authors have recently demonstrated the upregulation of TMPRSS4 in 11 different cancers, as well as its specific expression within the central nervous system using in silico tools. The present study aimed to expand the initial observations and, using immunohistochemistry, TMPRSS4 protein expression in the gastrointestinal (GI) tract and lungs was further mapped. Immunohistochemistry was performed on tissue arrays and lung tissues of patients with non­small cell lung cancer with concurrent coronavirus disease 2019 (COVID­19) infection using TMPRSS4 antibody. The results revealed that TMPRSS4 was abundantly expressed in the oesophagus, stomach, small intestine, jejunum, ileum, colon, liver and pancreas. Moreover, the extensive TMPRSS4 protein expression in the lungs of a deceased patient with COVID­19 with chronic obstructive pulmonary disease and bronchial carcinoma, as well in the adjacent normal tissue, was demonstrated for the first time, at least to the best of our knowledge. On the whole, the immunohistochemistry data of the present study suggest that TMPRSS4 may be implicated in the broader (pulmonary and extra­pulmonary) COVID­19 symptomatology; thus, it may be responsible for the tropism of this coronavirus both in the GI tract and lungs.


Assuntos
COVID-19/patologia , Trato Gastrointestinal/patologia , Neoplasias Pulmonares/patologia , Pulmão/patologia , Proteínas de Membrana/metabolismo , Serina Endopeptidases/metabolismo , Idoso , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/complicações , COVID-19/virologia , Trato Gastrointestinal/virologia , Humanos , Imuno-Histoquímica , Pulmão/virologia , Neoplasias Pulmonares/complicações , Masculino , Proteínas de Membrana/análise , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Serina Endopeptidases/análise , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA